小象学院:机器学习升级版 第七期 机器学习算法视频教程

课程简介:

课程目标:
本课程特点是从数学层面推导最经典的机器学习算法,以及每种算法的示例和代码实现(Python)、如何做算法的参数调试、以实际应用案例分析各种算法的选择等。

内容特色:
1.每个算法模块按照“原理讲解→分析数据→自己动手实现→特征与调参”的顺序,“原理加实践,顶天立地”。
2.拒绝简单的“调包”——增加3次“机器学习的角度看数学”和3次“Python数据清洗和特征提取”,提升学习深度、降低学习坡度。
3.增加网络爬虫的原理和编写,从获取数据开始,重视将实践问题转换成实际模型的能力,分享工作中的实际案例或Kaggle案例:广告销量分析、环境数据异常检测和分析、数字图像手写体识别、Titanic乘客存活率预测、用户-电影推荐、真实新闻组数据主题分析、中文分词、股票数据特征分析等。
4.强化矩阵运算、概率论、数理统计的知识运用,掌握机器学习根本。
5.阐述机器学习原理,提供配套源码和数据;确保“懂推导,会实现”。
6.删去过于晦涩的公式推导,代之以直观解释,增强感性理解。
7.对比不同的特征选择带来的预测效果差异。
8.重视项目实践(如工业实践、Kaggle等),重视落地。思考不同算法之间的区别和联系,提高在实际工作中选择算法的能力。
9.涉及和讲解的部分Python库有:Numpy、Scipy、matplotlib、Pandas、scikit-learn、XGBoost、libSVM、LDA、Gensim、NLTK、HMMLearn,涉及的其他“小”库在课程的实践环节会逐一讲解。

官方课程链接:http://www.chinahadoop.cn/course/1068

课程目录:

第一课:机器学习与数学分析
第二课:概率论与贝叶斯先验
第三课:矩阵和线性代数
第四课:Python基础
第五课:Python基础2 – 机器学习库
第六课:Python基础3 – 数据清洗和特征选择
第七课:回归
第八课:Logistic回归
第九课:回归实践
第十课:决策树和随机森林
第十一课:决策树和随机森林实践
第十二课:提升
第十三课:提升实践
第十四课:SVM
第十五课:SVM实践
第十六课:聚类(上)
第十七课:聚类(下)
第十八课:聚类实践
第十九课:EM算法
第二十课:EM算法实践
第二十一课:主题模型LDA
第二十二课:LDA实践
第二十三课:隐马尔科夫模型HMM
第二十四课:HMM实践

课程截图:

资源下载此资源仅限注册用户下载,请先

收费资源如果失效请在下方留言!
资源下载
下载价格免费

收费资源如果失效请在下方留言!
0

评论0

请先

没有账号? 注册  忘记密码?